
Who hedges interest-rate risk?
Implications for wealth inequality*

Sylvain Catherine† Max Miller‡ James D. Paron§

Natasha Sarin¶

May 23, 2022

Abstract

We present a life-cycle model in which households can invest in short- or
long-term assets to hedge against interest-rate risk. Our model matches impor-
tant stylized facts. First, the share of long-term assets in households’ wealth
is hump-shaped over the life-cycle. Within cohorts, it increases with wealth
and earnings. Second, wealth inequality grows when interest rates fall, but
only when wealth does not include the value of Social Security. Hedging de-
mand against interest-rate risk can explain 40% of long-run changes in wealth
inequality since 1960.

Keywords: Interest rates, Portfolio choices, Inequality, Social Security
JEL codes: D31, E21, G51, H55

*We thank seminar participants at the University of Maryland, Dartmouth Tuck, and Berkeley
Haas for helpful comments.

†University of Pennsylvania, Wharton, Finance department. Email: scath@wharton.upenn.edu
‡University of Pennsylvania, Wharton, Finance department. Email:

maxmil@wharton.upenn.edu.
§University of Pennsylvania, Wharton, Finance department. Email: jparon@wharton.upenn.edu
¶University of Pennsylvania, Law School and Wharton, Finance department. Email:

nsarin@law.upenn.edu

mailto:scath@wharton.upenn.edu
mailto:maxmil@wharton.upenn.edu
mailto:jparon@wharton.upenn.edu
mailto:nsarin@law.upenn.edu


1 Introduction

When households invest in different assets, and those held by the rich deliver higher

returns, portfolio choices contribute to trends in inequality (Fagereng et al., 2020;

Hubmer et al., 2021). In particular, long-term assets delivered exceptional returns

in the last five decades (Binsbergen, 2021). Because wealthier households invest

more in these assets, these exceptional returns increased private wealth inequality

(Greenwald et al., 2021). But why do some households invest more in long-term

assets than others?

The goal of this paper is to answer this question. To do so, we present a life-

cycle model that provides theoretical foundations to the cross-section of long-term

asset holdings. Long-term assets are a desirable hedge for those who are reliant on

the rate of return on private savings, because they generate large capital gains when

rates fall. These gains compensate for the deterioration of investment opportunities.

We show that there are predictable differences in the dependence of households on

private savings that drives certain types of people to be more heavily invested in

long-duration assets.

Households need to hedge against declining interest rates to the extent that their

lifetime consumption depends on the rate of return on private savings. This is less

true for three classes of households. First, older households who have shorter in-

vestment horizons, making rate decreases less meaningful in the presence of fewer

periods of compounding. Second, younger households who are already implic-

itly invested in a long-duration asset through their own human capital. Third, low

earners whose primary savings vehicle is Social Security, because the rate of re-

turn on Social Security contributions is not impacted by changes in interest rates.

These predictions are consistent with the cross-sectional relationships we document

between wealth, age, earnings, and households’ propensity to invest in long-term
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assets in the Survey of Consumer Finances (SCF).

Overall, 40% of the long-run variation in U.S. wealth inequality since the 1960s

can be explained by these differences in portfolio choices that lead middle-aged,

higher-earning households to be more heavily tilted toward longer-duration assets.

In the presence of a long-run decline in interest rates, these differences drive up

private wealth inequality; in the presence of a long-run rise in interest rates, the

same phenomenon drives wealth inequality down.

Our primary contribution is to build a life-cycle model with uninsurable income

risk, a Social Security system, bequests, differences in life expectancy, and stochas-

tic interest rates. Households can choose how sensitive their wealth is to changes

in interest rates by mixing two assets: a short- and a long-term bond. The finitely

lived agents change their portfolio choices as they age; and the presence of human

capital (itself a long-term asset) and Social Security give heterogeneous households

different incentives to protect against interest-rate risk.

We then use an overlapping generations (OLG) version of our model to study

the implications for the dynamics of wealth inequality. Heterogeneity in sensitiv-

ity to interest-rate changes drives a significant portion of historical trends in pri-

vate wealth inequality because top wealth shares rise (fall) when rates fall (rise).

However, we also show that, in our model, differences in households’ exposure to

interest rates within an age cohort vanish when we extend the concept of wealth to

include Social Security and human capital. Said another way, the hedging motive

that drives households to invest in long-term assets is less pronounced for house-

holds who already implicitly hold long-term assets through human capital and those

who depend primarily on Social Security, which is not exposed to interest-rate risk.

The design of Social Security magnifies these differences. Low earners have

higher Social Security replacement rates than high earners, and thus do not rely

as much on private savings. This reduces their need to hedge interest-rate risk by
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holding long-term assets. Above and beyond the age effect, this steepens the rela-

tionship between wealth and earnings and rate sensitivity. That is why the increase

in private wealth inequality is significantly attenuated by the inclusion of Social

Security in the measure of wealth (Catherine et al., 2020).

It seems plausible that households approach portfolio choices in a way that is

consistent with our theoretical model. Households can eliminate interest-rate risk

by building a portfolio of zero-coupon assets that replicates the difference between

their consumption plan and future income over their life-cycle. This removes un-

certainty regarding the cost of transferring resources across time.

In reality, households do not invest in zero-coupon assets. Instead, they hedge

interest-rate risk as follows. At the bottom of the earnings distribution, Social Se-

curity protects workers from interest-rate fluctuations directly because benefits are

independent of rates. Lower-middle-class households complement Social Security

by buying a house. In doing so, they buy a stream of future residential consump-

tion at the current spot price. The most common financing mechanism, a fixed-rate

mortgage (Moench et al., 2010), has the benefit of guaranteeing the consumption

value derived from future savings (mortgage payments). Because they face very

low replacement rates, higher earners rely more on private savings: retirement ac-

counts invested in the stock market. Since stocks are a high-duration asset, they

protect retirement consumption because their market value goes up when rates fall.

The differences in hedging behavior relate to observed differences in private

wealth inequality, which in the U.S. fell from the 1960s to the 1980s and has steadily

risen since, while real short-term rates have followed the opposite trend. Using the

historical time series of real interest rates, our OLG model can explain 40% of the

decline in the top 10% wealth share between 1960 and 1985 and of its subsequent

rise between 1985 and 2019.

Our paper extends past literature by providing a theoretical foundation for an
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important driver of portfolio-return heterogeneity. The importance of this work is

highlighted by Moll (2021) who argues that explaining the portfolio choices that

generate heterogeneous returns is first order. Benhabib et al. (2019), Hubmer et al.

(2021) and Fagereng et al. (2021) have empirically documented that the higher re-

turns of the wealthy are essential for explaining wealth inequality and its evolution.

We provide an explanation for this heterogeneity: wealthier households are more

likely to invest in long-term assets.

By doing so, we complement a recent strand of the literature that studies why

wealthy households invest more in the stock market. This fact can be explained by

decreasing relative risk aversion (Meeuwis, 2022), the crowding-out effect of hous-

ing (Cioffi, 2021), or the exposure of less wealthy households to counter-cyclical

consumption risk (Catherine, 2021; Catherine et al., 2021). Unlike these studies,

we focus our attention on the trade-off between short- and long-term assets, be-

cause stocks have not outperformed government bonds of similar duration over the

last four decades (Binsbergen, 2021).

Auclert (2019) argues that falling rates redistribute wealth towards investors

holding long-term assets; Greenwald et al. (2021) show that, empirically, these

investors tend to be wealthier. We complement these papers by providing micro-

foundations to the cross-section of households’ propensity to invest in long-term

assets. Kumhof et al. (2015) and Mian et al. (2021) suggest the reverse causal

relationship: wealth inequality caused interest rates to decline because the rich have

higher savings rates. Even if this is the case, the driver of the decline in interest rates

is not relevant to our underlying contribution: as the interest rate environment shifts,

differences in portfolio choice between households mechanically lead to marked

changes in private wealth inequality.

We also contribute to a longstanding literature on household portfolio choices.

This literature has almost entirely studied how households allocate wealth between
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the stock market portfolio and a riskfree government bond.1 Few of these articles

examine interest-rate exposure directly. The exception is Campbell and Viceira

(2001), who study a choice between a short- and a long-term zero-coupon bond.

They show that the desire to hedge rate fluctuations can increase the demand for

long-term bonds; however, their model does not account for the effects of the life-

cycle or the substitution effects from human capital and Social Security. We show

that these effects are essential to explaining the data.

2 Stylized facts

This section presents four stylized facts: 1) interest-rate sensitivity is hump-shaped

over the life-cycle, 2) high earners hold assets with higher interest-rate sensitivity,

3) interest-rate sensitivity is increasing in wealth, and 4) the time series of wealth

inequality follows the decline in interest rates.

2.1 Measuring interest-rate sensitivity

Duration To understand interest-rate sensitivity in the cross-section of house-

holds, we use data from the triennial Survey of Consumer Finances on household

portfolios, income, and wealth to estimate cash-flow duration — the value-weighted

timing of cash flows from wealth — for each household wealth portfolio. Duration

is a useful proxy for rate sensitivity, since it is equal to the price elasticity with

respect to interest rates when shocks to interest rates are permanent.

We adopt different methods to compute the cash-flow durations of assets and

liabilities. For assets, we combine estimates from Greenwald et al. (2021) — who
1The canonical model for this decision is provided by Merton (1969). More recent work has

examined this classic portfolio problem in the presence of labor-income risk (Benzoni et al., 2007;
Catherine, 2021; Cocco et al., 2005; Viceira, 2001) and housing (Cocco, 2005).
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provide duration estimates for aggregate real estate, equity, and liquid assets —

with data on Macaulay duration from Bloomberg for government debt, municipal

bonds, mortgage-backed securities, foreign bonds, and corporate bonds.

The exception to this methodology is private-business and vehicle duration,

which we determine using additional information provided in the SCF. The duration

of private business wealth is estimated from the aggregate private business price-

dividend ratio. This ratio is computed by dividing the aggregate business value

provided in the SCF by the aggregate income from private businesses less wages

for entrepreneurs receiving a wage from their business and less predicted wages

for entrepreneurs not reporting a wage. This procedure yields an average private-

business duration of 36.5 years. The duration of vehicles is determined using the

age of the car, assuming constant depreciation and a maximum life of the vehicle,

which we linearly interpolate between 8 years in 1989 up to 12 years in 2019.

To account for the possibility that households of different ages and wealth may

hold equity and private business assets of differing duration, we adjust the aggre-

gate duration estimates for these asset classes using valuation ratios implied by the

SCF. For publicly traded equity, we compute the SCF-implied price-dividend ratio

for networth deciles within the age groups of 20–40, 40–60, and 60+, and use them

to adjust aggregate duration. For private businesses, we employ a similar proce-

dure using the price-total-income ratio for networth centiles within each 20-year

age group to adjust aggregate duration. Both procedures are outlined in detail in

Appendix A.2.

For liabilities, we assume a fixed repayment schedule and estimate duration as

dur(Debt) =
N∑

n=1

(
e−nynt∑N

n′=1 e
−n′yn′t

)
n, (1)

where N is the number of years remaining on the loan, provided in the SCF; and
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ynt is the riskfree spot rate at horizon n in year t which we obtain from the nominal

yield curve from the Fed less SSA inflation projections. In the case in which the

remaining years on the loan are not given, we use data on the loan balance, current

rate of interest, the original maturity of the loan, and current payments, as detailed

in Appendix A.2. Under this procedure, mortgages have an average duration of

9 years, and vehicle and other loans have an average duration of approximately 2

years.

Link between duration and interest-rate sensitivity Cash-flow duration is only

equivalent to interest-rate sensitivity when shocks to interest rates are permanent. If

instead interest rates follow an AR(1) process with persistence φ, as we will assume,

then rate sensitivity will be lower than duration. Motivated by the mathematical

results that follow, we assume that an asset’s interest-rate elasticity is the following

concave transformation of its cash-flow duration:

ε̂(Asset, rf ) =
1− φdur(Asset)

1− φ
(2)

This assumes that the interest-rate sensitivity of the asset is the same as the interest-

rate sensitivity of a riskfree zero-coupon bond with the same duration.2

After applying the adjustment to each asset, we compute the interest rate sen-

sitivity of the wealth-portfolio for household i as the value-weighted sum of each

component elasticity:

ε̂(Wealthi, rf ) =
∑
j

Assetji
|Wealthi|

× ε̂(Assetji, rf ), (3)

2This is a simplifying assumption. The rate sensitivity of an asset may not equal that of an
equal-duration bond because, when interest rates follow an AR(1), the timing of the cash flows also
matters for the interest-rate sensitivity.
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where Assetji denotes the value of the asset or debt, Wealthi denotes the value of

all assets the household holds less debts, and ε̂(·, rf ) is the estimated interest-rate

elasticity of that asset or debt.

Interest-rate dynamics We assume that the riskfree rate follows a first-order au-

toregression given by

rf,t+1 = (1− φ)r̄f + φrft + σrϵr,t+1. (4)

Given this, we calibrate the stationary mean, persistence, and volatility to match

moments of the real yield curve, computed by subtracting inflation projections from

the SSA annual reports from the nominal yield curve from the Federal Reserve.3

In particular, over our sample period of 1989–2019, we target 1) the slope on a

regression of the 30-year real forward rate (f30) on the current one-year real yield,

2) the average 30-year real forward rate, and 3) the unconditional volatility of the

one-year real yield. These three moments provide an exactly identified system that

defines each parameter in terms of data moments that can be estimated using a

method of moments counterpart. The data moments we use for this procedure, their

model counterparts, and the parameter values we obtain are shown in Table 1.

Table 1: Parameter values and moments for the riskfree rate process

Moment condition Estimate
Data moment Model equiv. Data value Parameter Value

cov(f30,t, rft)/var(rft) φ30 0.2569 φ 0.9557

f̄30,t r̄f 0.0193 r̄f 0.0193

var(rft) σ2
r/(1− φ2) 0.0167 σr 0.0049

3Data on the nominal yield curve can be found here, who provide estimates of the zero-coupon
yield curve using off-the-run Treasury coupon securities for horizons up to 30 years.
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The reason we calibrate to the yield curve, as opposed to the time series of

short-term real rates, is that the yield curve captures the expectations investors have

over future interest rates. As such, matching the yield curve is more important for

obtaining realistic asset price levels and capital gains for rate-sensitive assets.

To obtain a time series of short-term real interest rates, we use a methodology

similar to that of Beeler and Campbell (2012) on the 10-year nominal Treasury

bond yield and annual inflation, also described in detail in Appendix A.3. We use

this methodology for two main reasons. First, by using long-term rates to back out

short-term rates, we smooth much of the variation in measured short-term real rates

that are potentially outside of our model. Second, this methodology allows us to

extend our real rate series further into the past, allowing for a longer simulation

prior to our period of interest.

2.2 Interest-rate sensitivity is hump-shaped over the life-cycle

The first stylized fact is that the rate sensitivity of household wealth portfolios is

hump-shaped over the life-cycle: it is lowest for 20-year-olds, rises to a high for

40- to 45-year-olds, then steadily declines thereafter. Figure 1 decomposes this pat-

tern clearly, showing the relative contribution of each asset to the total portfolio rate

sensitivity. The difference in portfolio interest-rate sensitivities at each age is de-

termined by the assets households choose to hold. For example, 20- to 25-year-old

households have relatively low interest-rate sensitivity because the majority of their

wealth (70.4%) is invested in liquid accounts (e.g., checking and savings accounts)

and vehicles. Their holdings of highly rate-sensitive assets like publicly-traded

stocks and home equity are substantially smaller than they will be later in the life,

comprising only 17.3% of the portfolio. Leverage also has a minor role at this age.

As households approach midlife, the composition of assets changes and the

10



Figure 1: Interest-rate sensitivity of wealth by age

A. First earnings tercile B. Second earnings tercile C. Third earnings tercile
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Note: This figure reports the interest-rate sensitivity of wealth by age and tercile of earnings. The rate
sensitivity is decomposed into the contribution of six components of wealth. From bottom to top, we
calculate the sensitivity of partial portfolios, adding components step-by-step. First, we report the
interest-rate sensitivity of liquid assets and fixed-income assets. We then report the rate sensitivity
of a larger portfolio that also include vehicles, and so forth. Thus, the interest-rate sensitivity of the
partial portfolio inclusive of the first k components of wealth is:

ε̂(Portfoliok, rf ) =
Portfoliok−1

Portfoliok
ε̂(Portfoliok−1, rf ) +

Componentk
Portfoliok

ε̂(Componentk, rf ).

interest-rate sensitivity of the portfolio grows. Shorter-term liquid assets and ve-

hicles contribute roughly the same to interest-rate sensitivity as they do for the

young, but now, the majority of the portfolio (48.7% for 40-year-olds) is made up

of longer-term assets like equity and real estate. Moreover, leverage — in particu-

lar, mortgages and other debts — plays a more important role, increasing the rate

sensitivity of the wealth portfolio by nearly 20%. The reason leverage increases the

rate exposure of the household’s portfolio is because the average rate sensitivity of

assets is nearly double that of debts over our sample. The net position, therefore,

has a higher interest-rate sensitivity.
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As middle age turns to retirement, the rate sensitivity of household portfolios

begins to fall. The decline in rate exposure is driven not by the asset side of the

portfolio, but rather by the disappearance of leverage, which reduces the interest-

rate sensitivity of the wealth portfolio. This is consistent with the conventional

narrative in saving for retirement: households with a large stock of human capital

take on mortgages in early adulthood to guarantee housing consumption flows in

old age. We discuss this intuition at length in Section 4.

2.3 Interest-rate sensitivity is increasing in earnings

The second stylized fact is that high-earning households hold more rate-sensitivity

portfolios, on average, as seen by comparing the three panels of Figure 1. The

three panels show that, for a 1 percent decline in interest rates, the top earnings

tercile will see approximately 4 percent larger capital gains than those of the bottom

earnings tercile. In the model presented below, earnings are the primary source

of heterogeneity within a cohort, with higher-income households holding higher

interest rate sensitivity portfolios. In practice, the main difference between the

bottom tercile (Panel A) and the middle tercile (Panel B) is in home equity, while

the difference in interest rate sensitivity among the top tercile (Panel C) is due to

differences in equity holdings. Section 4 explains the causes of these differences.

2.4 Interest-rate sensitivity is increasing in wealth

The third stylized fact is that interest-rate sensitivity is generally increasing in

wealth. This fact is shown in Figure 2, which decomposes the average rate sen-

sitivity for households between ages 40 and 45 over the log of wealth scaled by

the Social Security Wage Index in the survey year. For low-wealth households,

the assets that contribute to interest-rate sensitivity are short-term assets like liquid
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Figure 2: Interest-rate sensitivity at ages 40–45 by level of wealth
0
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Log Wealth/Wage Index

Liquid assets and fixed income
+Vehicles
+Home equity
+Home leverage effect
+Equity and private business
+Other debt = total

Note: This figure decomposes the interest-rate sensitivity for households in which the head of the
household is between 40 and 45. The methodology is the same as in Figure 1, except that here the
x-axis is the log of wealth scaled by the Social Security Wage Index in the survey year.

accounts and vehicles, with non-mortgage debt positions playing the largest role.

For middle-wealth households, real estate becomes the dominant asset, with its rate

sensitivity amplified by the mortgage taken on to finance the purchase. There is a

small bump for lower-middle-wealth households, which we later argue arises from

the indivisibility of housing, a financial friction. As wealth increases, portfolio rate

exposures increase with larger positions in highly rate-sensitive assets like publicly

traded equity and private businesses.

2.5 Wealth inequality follow interest rates

The fourth and final stylized fact is that, over the last six decades, the wealth share

of the top 10% of the wealth distribution has closely tracked the price of a one-year
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Figure 3: Wealth inequality and estimated 10-year real forward rates

.9
4

.9
6

.9
8

1
O

ne
 m

in
us

 e
st

im
at

ed
 1

0-
ye

ar
 re

al
 fo

rw
ar

d 
ra

te

.6
.6

4
.6

8
.7

2
To

p 
10

%
 w

ea
lth

 sh
ar

e

1960 1970 1980 1990 2000 2010 2020

Note: This figure presents the time series of the top 10% wealth share from the World Inequality
Database and 1− f̂10,t, one minus our estimated 10-year real forward rate from Equation (A.3).

bond. Figure 3 plots 1 − f̂10,t, the implicit price of the 10-year forward. We use

10-year real forward rates f̂10 here because they represent expectations of where

interest rates will be, and so contain information about the persistent component of

the interest rate. One potential mechanism that would tie these two series together

— discussed in detail in Greenwald et al. (2021) — is that the positive relationship

between wealth and interest rate sensitivity led wealthier individuals to have higher

capital gains from declines in interest rates.
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3 Model

We model household consumption and investment decisions over a life-cycle which

can be divided into two stages: working age and retirement.

3.1 Agents

Agent i chooses consumption Ci and portfolio allocation πi to maximize lifetime

utility

Vit = max
{Cis,πis}

Et

tmax∑
s=t

βs−t

[
(1−mis)

C1−γ
is

1− γ
+misb(Wis, rfs)

]
, (5)

where β is the rate of time preference, γ is the coefficient of relative risk aver-

sion, tmax is the maximum lifespan, mi is the age- and income-dependent mortality

probability, and b is the bequest motive over terminal wealth W and the interest rate

rf .

While working-aged, the agent receives labor income Li and pays Social Se-

curity taxes Ti; in retirement, which begins at a given time tret, he or she receives

benefits Bi. The utility maximization is therefore subject to the budget constraint

for wealth

Wi,t+1 = (Wit + Lit +Bit − Tit − Cit)RW,it+1, (6)

with gross return on savings

RW,it+1 = Rft + πit(Rn,t+1 −Rft). (7)

In this expression, Rf is the return on a riskfree bond, Rn is the return on the long-

term asset, and πi the share of wealth invested in this asset.
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3.2 Interest rates and wealth returns

Rates of return on assets vary over time; we thus model stochastic processes for the

short- and long-term bond returns and constrain their joint dynamics using equi-

librium pricing conditions. Denote log returns by lowercase r = logR. The risk-

free interest rate follows a first-order autoregression, as shown in equation (4). We

model the long-term asset as a claim to one unit of consumption in n periods. Its

payoff is riskless in real terms. Its price, denoted Pn, satisfies the expectations hy-

pothesis, generalized to include constant term premia. We assume that the term

premium on each n-period bond is some constant µn (with µ1 = 0). As we show

in Appendix B.2, these assumptions imply an explicit relation between the dynam-

ics of long-term bond returns and short-term rate fluctuations: the log bond return

equals

rn,t+1 = rft + µn − σnϵr,t+1. (8)

We set µn = −σ2
n/2, so that there is no risk premium. This is because we are

interested in the effect of rate fluctuations, not the additional risk compensation for

holding long-term government debt. The sensitivity to rate shocks is

σn =
1− φn−1

1− φ
σr. (9)

It is straightforward to show that the rate elasticity of the long-term bond price is

ε(Pnt, rft) = −∂ logPnt

∂rft
=

1− φn−1

1− φ
=

σn

σr

. (10)

This sensitivity is increasing in maturity n. We see immediately the effect of un-

expected changes in interest rates: if the riskfree rate unexpectedly falls, then the

long-term bond has an unexpectedly high return from capital gains. The longer is
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the maturity n, the larger is this response. These return processes, together with the

agent’s portfolio allocation πi, give us the return on wealth from (7).

3.3 Labor income

We model labor-income dynamics using the empirically realistic process estimated

by Guvenen, Karahan, Ozkan and Song (2022). Each agent’s income Li is the

product of the aggregate wage index L1 and an idiosyncratic component

L2,it = exp {g(t) + ζi0 + zit + ϵit} . (11)

The deterministic component g(t) is a quadratic polynomial of age; it captures com-

mon life-cycle patterns in income. The parameter ζi0 governs heterogeneous levels

of earnings. The persistent component of earnings, denoted by zi, follows a first-

order autoregression

zit = ρzi,t−1 + ηit, (12)

with innovations ηi drawn from a mixture of normal distributions

ηit ∼

N (µη1, σ
2
η1) with probability pz,

N (µη2, σ
2
η2) with probability 1− pz.

(13)

The initial cross-sectional distribution of the persistent component of earnings is

given by zi0 ∼ N (0, σ2
z0). The transitory component of idiosyncratic earnings ϵit is

also drawn from a mixture of normal distributions

ϵit ∼

N (µϵ1, σ
2
ϵ1) with probability pϵ,

N (µϵ2, σ
2
ϵ2) with probability 1− pϵ.

(14)
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These mixture processes serve to match higher-order moments of income growth.

3.4 Social Security

Agents pay Social Security payroll taxes Ti on their labor income during working

life, then receive benefits Bi in retirement. We assume all workers retire at the full-

retirement age tret which is the age at which they receive 100% of their scheduled

benefits. The tax payments are 10.6% of all income below the Social Security wage

base, which is 2.5 times the average wage:

Tit = 0.106min{Lit, 2.5L1,t}. (15)

Social Security retirement benefits depend on the agent’s average indexed yearly

earnings (AIYE), which is an average of the highest 35 years of indexed earnings

Lindexed
it = min{Lit, 2.5L1,t}

L1,60

L1,t

(16)

up to retirement. In words, indexed earnings are the income below the wage base at

a given age, adjusted for growth in the aggregate wage index L1 up to age 60. Total

benefits are then a piecewise-linear function of the AIYE:

Bit =


0.9AIYEi60 if AIYEi60 < b1,

0.9b1 + 0.32(AIYEi60 − b1) if b1 ≤ AIYEi60 < b2,

0.9b1 + 0.32(b2 − b1) + 0.15(AIYEi60 − b2) if b2 ≤ AIYEi60.

(17)

The kinks in this benefit formula are determined by the “bend points” b1 and b2,

which historically are about 21% and 125% of the wage index, respectively. The

formula is progressive: as AIYE (lifetime income) increases, the marginal benefit
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declines. Note that AIYE is itself bounded above due to the wage base, so benefits

have an upper bound. Benefits after the retirement year are held constant in real

terms — that is, they are adjusted in nominal terms to account for CPI inflation.

Before retirement, we keep track of average index earnings as:

AIYEit =
t∑

s=t0

min{Lis, 2.5L1,s}
L1,t

L1,s

= L1,t

t∑
s=t0

min{L2,is, 2.5}. (18)

3.5 Income taxes

Households pay taxes on income and benefits according to the income tax brackets

faced by U.S. households in 2020, adjusted for changes in the aggregate wage index.

Marginal tax rates are progressively increasing in idiosyncratic income L2,i; we

report the formula for these rates in Appendix B.1.

3.6 Bequests

Individuals bequeath to their children an inheritance from their terminal financial

wealth. In modeling utility over bequests, one must consider the fact that inheri-

tance does not necessarily constitute a one-time transfer of liquid wealth; it might

instead be a long-lived flow of consumption, such as from real estate. Hence, we

model the bequest motive as a function of an annuity flow C̄i which takes into ac-

count both the value of financial wealth and the time value of money. Specifically,

we assume

b(Wit, rft) = b̄
C̄1−γ

it

1− γ
, (19)
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where b̄ can be interpreted as the number of years of consumption that the agent

wants to bequeath, and C̄i is the coupon implicit in the annuity of b̄ years:

Wit = C̄it

b̄∑
k=0

Pkt. (20)

4 Economic intuition

To communicate the first-order intuition of our model, we first present an analytical

solution to a linearized version with no idiosyncratic income risk or bequests.4

4.1 Optimal choices without labor income

Without labor income, the linearized model implies the optimal consumption policy

C∗
it

Wit

= (1− β(1−mit))︸ ︷︷ ︸
time discounting

× exp

{(
1− 1

γ

)
(ϱ0t + ϱrtrft)

}
︸ ︷︷ ︸

income and substitution effects

. (21)

The first term represents the positive effect of impatience and mortality on con-

sumption. The second term represents the net effect of the income and substitution

effects from interest rates. Higher rates mean higher interest income, so that house-

holds can consume more today (the income effect). At the same time, higher rates

mean agents get more consumption tomorrow in exchange for their savings (the

substitution effect). The income effect dominates the substitution effect when the

elasticity of intertemporal substitution (the EIS, 1/γ) is less than one (γ > 1). The

sensitivity of consumption to interest rates depends on the coefficient ϱrt, which is

positive and declining in age.5 Because they depend less on future rates of return,

4See Appendix C for derivations and further discussion.
5We use the shorthand notation ϱ0t and ϱrt for ϱ0({mis}s≥t) and ϱr({mis}s≥t), respectively.

Both quantities approach zero as mit → 1: agents approaching the end of life consume everything.
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older households’ consumption reacts less to changes in interest rates.

The optimal allocation to the n-period bond is6

π∗
it =

1

γ

µn +
1
2
σ2
n

σ2
n︸ ︷︷ ︸

myopic demand

+

(
1− 1

γ

)
ϱrt

(
1− φn−1

1− φ

)−1

︸ ︷︷ ︸
duration/hedging demand

. (22)

The first term represents the traditional risk-return tradeoff of Merton (1969). The

second term is the demand from intertemporal hedging of interest-rate fluctuations,

the focus of our paper. Because its value increases when rates unexpectedly decline,

the long-term bond offers protection against the deterioration of investment oppor-

tunities. The sensitivity of consumption to rate shocks declines with the investor’s

horizon, so the hedging demand decreases in age toward zero with the coefficient

ϱrt. Therefore, absent labor income and Social Security, the rate exposure of house-

holds’ portfolios should decline over the lifecycle.

4.2 Adding labor income and Social Security

Now let us consider the effect of labor income and Social Security. Suppose that

labor income Li, taxes Ti, and benefits Bi are deterministic. The values of human

capital Hit and Social Security wealth Sit are

Hit =
tret−t∑
k=1

[
k∏

s=1

(1−mi,t+s)

]
PktLi,t+k, (23)

and

Sit =
tmax∑
k=1

[
k∏

s=1

(1−mi,t+s)

]
Pkt(Bi,t+k − Ti,t+k), (24)

6As we verify in Appendix C.2, this solution holds true even if we separate the coefficient of
relative risk aversion from the elasticity of intertemporal substitution (EIS). Thus, the portfolio share
is indeed governed by risk aversion, and not the EIS.
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where
∏k

s=1(1 −mi,t+s) is the cumulative probability of surviving from t to t + k

and Pkt is the price of a k-maturity zero-coupon bond. Define total wealth W i as

the sum of wealth Wi and these present values.

Implementing the same linearization implies the consumption rule relative to

total wealth is the same as in the no-income solution: Ci/W i equals the right-hand

side of (21). Similarly, the optimal allocation to bonds out of total wealth is π̄i = π∗
i

from (22). The optimal allocation out of financial wealth W then takes the form

πit = π∗
it + (π∗

it − πH
it )

Hit

Wit

+ (π∗
it − πS

it)
Sit

Wit

. (25)

The endowments of human capital and Social Security wealth are implicit holdings

of long-term assets, and thus substitutes for the traded n-period bond. The values

πH
i and πS

i represent the implicit percentage of each asset invested in the n-period

bond. The agent adjusts the allocation to wealth πi such that the duration of total

wealth matches π∗
i .
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Figure 4: Effect of labor income and Social Security on long-term asset share
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Note: This figure shows a representative path of total wealth components, their duration, and their
effect on wealth allocations over the life-cycle. Panel A plots the average values of each component
of total wealth, defined as the sum of wealth and the present values of labor income (human capital)
and Social Security taxes and benefits. Panel B shows the implicit share of each component in the
n-period bond. Panel C illustrates the incremental effect of each component on the financial-wealth
allocation to the long-term bond.

Figure 4 illustrates the life-cycle pattern generated by this model. Early in life,

most agents have little financial wealth and a large endowment of high-duration

human capital. To match their ideal total-wealth rate exposure, they hold mostly

short-term bonds. As households get closer to retirement, they increase holdings

of the long-term asset to offset short-term labor income and taxes, net of long-term

benefits. As they progress through retirement, households reduce long-term bond

holdings, in line with the declining target allocation implied by the policies above.

In sum, substitution and aging effects explain the hump-shaped pattern in the data.
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Figure 5: Wealth-duration relation with income and Social Security
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Note: This figure illustrates the effect of Social Security on intra-cohort allocations to the long-term
asset. Panel A plots the optimal long-term bond share as a function of the ratio of wealth W to
human capital H when there is no Social Security. The round marker represents the ratio W/H
observed in the data. Panel B shows the same relation but in the presence of Social Security. In
Panel C, we re-plot the points in Panels A and B in terms of wealth only.

In addition to these effects, the progressivity of Social Security implies that

households with lower earnings will hold less rate-sensitive portfolios, even after

controlling for wealth and income. Figure 5 illustrates this prediction. Without

Social Security, wealth-income ratios and portfolio allocations within a cohort show

little variation. But because Social Security yields higher replacement rates for low-

earning households, it has a larger effect on their portfolios. This arises out of two

compounding effects. First, fixing wealth-income ratios, low earners have more

Social Security per dollar of income, which they offset by decreasing financial-

wealth duration. Second, the comparatively large endowment of Social Security

reduces the savings rates of low earners, reducing their wealth-income ratios. As

the third panel of the figure shows, these effects combine to generate a steep positive

relation between wealth and duration, just as in the data.
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4.3 Targeting consumption duration

These optimal policies ultimately imply that agents choose assets to hedge interest-

rate risk and finance a smooth consumption plan. When we add intertemporal in-

come, agents simply adjust this trading strategy to target a consumption plan of the

same shape — that is, with the same duration. In our framework, agents achieve this

by buying and selling zero-coupon bonds with payoffs arriving at approximately the

same time as the desired consumption flows.

We can illustrate this intuition most clearly in the limiting case of an infinitely

risk-averse investor.7 In this case, the investor’s desire to smooth consumption over

time yields a constant, deterministic policy Cit = C̄i. Let Yi denote the agent’s

deterministic stream of income. Financial wealth is the present value of the excess

consumption plan:

Wit =
tmax∑
k=1

Pkt(C̄i − Yi,t+k). (26)

The agent can secure the optimal consumption plan by buying C̄i − Yi,t+k of each

k-period zero-coupon bond and consuming the coupons and income at maturity.

The strategy is unaffected by capital gains and losses from interest-rate changes.

As we prove in the Appendix, the optimal allocation πi replicates exactly this buy-

and-hold strategy in the limit as γ → ∞.

This result may seem abstract, but its intuition in the real world (Figure 1) is

stark. Consider a young investor with little financial wealth and a large stock of hu-

man capital. For most of his working life, the agent earns more than he consumes.

To smooth this income over the lifecycle, he saves at a high rate and composes

a long-term portfolio. We see individuals doing this in the data. Young workers

purchase housing for its steady stream of lifetime consumption, but because their

7See Appendix C.4 for a derivation and more detailed technical discussion of this case.

25



implicit endowment of human capital is so large, they lever this position with a

mortgage. The purpose of the mortgage is not only to finance the large expenditure;

its interest payments also serve to offset the high stream of near-term income and

defer consumption flows to retirement. Then, at retirement, agents receive constant

consumption flows via housing, Social Security benefits, and income from invest-

ments made during working life (a 401(k)). After all of this duration-matching is

complete, the lifecycle consumption path is relatively smooth.

4.4 Implications for wealth inequality

Recall that an individual’s financial wealth evolves according to

Wi,t+1

Wit

=

(
1− Cit − Yit

Wit

)
︸ ︷︷ ︸

savings

Ri
W,t+1︸ ︷︷ ︸

portfolio

, (27)

where Yi is the sum of labor income, taxes, and benefits. There are thus two chan-

nels through which the interest rate can affect inequality: consumption-wealth ra-

tios (savings) and portfolio allocations (portfolio returns).

Without labor income and Social Security, the consumption and portfolio poli-

cies (21) and (22) are functions of age only, so that within-cohort wealth inequality

is fixed at its initial condition. This is true regardless of interest-rate dynamics.

Between-cohort wealth inequality, on the other hand, is affected by returns. The

relative effect on savings depends on the level of the rate: older households con-

sume more because of time discounting, but younger households consume more

due to the income effect of interest rates. Low riskfree returns increase the savings

rates of the young most. Portfolio returns generate inequality through differential

exposure to rate shocks. Because younger households hold more wealth in the

long-term bond, their wealth increases by more after an unexpected rate decline.
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As we have explained, adding income creates a substitution effect even within

cohorts, yielding an additional dimension to wealth-inequality dynamics. First,

recall the optimal savings policy

1− C∗
it

Wit

= 1−
(
1 +

Hit

Wit

+
Sit

Wit

)
cw∗

it, (28)

where cw∗
i represents the target ratio of consumption to total wealth, the right-

hand-side of (21). Households with larger endowments of human capital (young

households) and Social Security (low wealth-income-ratio households) save less

into financial wealth. Moreover, inequality is affected by inter- and intra-cohort

differences in allocations πi. Consider the response of inequality to an unexpected

rate decline, which causes long-term bonds to appreciate. As Panel C of Figure 4

shows, middle-aged cohorts gain the most wealth. As Panel C of Figure 5 shows,

high-wealth and high-income households gain the most wealth within a cohort be-

cause their financial wealth has the highest rate exposures.

5 Matching the stylized facts

5.1 Calibration

Preferences We calibrate households’ preferences to match the evolution of wealth

over the life-cycle and the average interest-rate sensitivity of wealth observed in the

SCF. We find that a discount factor of β = .95 and a bequest motive equivalent to

b̄ = 10 years of consumption matches the growth of wealth until retirement age and

its evolution afterwards. Moreover, a coefficient of relative risk aversion of γ = 6

matches the average rate sensitivity of wealth.

Our calibration of γ is consistent with studies matching the life-cycle profile of
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the share of wealth invested in stocks, which typically use values between 5 and 6

(Benzoni, Collin-Dufresne and Goldstein, 2007; Catherine, 2021; Lynch and Tan,

2011; Meeuwis, 2022). Based on portfolios observed in Swedish administrative

data, Calvet, Campbell, Gomes and Sodini (2021) estimate an average γ of 5.24.

Income process We calibrate the stochastic parameters of the labor process using

estimates from Guvenen et al. (2022), which we report in appendix D.1.

Mortality We model mortality as a function of age and past lifetime earnings:

mit = min

{
χ

(
AIYEit

L1,t

)
×m(ageit), 1

}
(29)

where χ is an adjustment coefficient which only depends on the average indexed

earnings of the agent up to time t and m(ageit) is the average mortality rate at his

age which we calibrate as the average across gender from the 2017 Social Security

actuarial life tables. While χ
(

AIYEit

L1,t

)
does not depend on age, the agent sees his

life expectancy change as he moves up or down the wage ladder. An advantage

of our method is that the agent’s life expectancy is less volatile than if it were a

function of persistent income zit. We calibrate the value of χ
(

AIYEit

L1,t

)
at each point

of the numerical grid of the AIYEit/L1,t state variable such that, given our labor-

income process, we obtain the same life expectancy differential across percentiles

of χ
(

AIYEit

L1,t

)
at age 40 as those reported by percentiles of earnings in Chetty et al.

(2016).

5.2 Cross-section of interest-rate sensitivity

Figure 6 reports the evolution of wealth and its sensitivity to interest rates over the

life-cycle, in the data and in the model. The left panel shows that the model matches
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the evolution of wealth very well. The right panel shows that, like in the data, the

interest-rate sensitivity of wealth increases over the first twenty years and declines

afterwards. The increase is explained by the substitution effect of human capital

and Social Security early in life. Both these assets have higher rate sensitivity than

the agent’s target, thus reducing the optimal long-term asset share. Over the life-

cycle, the duration of human capital declines and drops below the agent’s target,

reversing the sign of the hedging demand and increasing the long-term asset share.

As the weight of human capital declines with age, the magnitude of the hedging

begins to fall at retirement.

During retirement, the decline in the agent’s investment horizon becomes the

dominant force and reduces the need to hedge against falling interest rates. As a

result, the long-term asset share falls. This decline is moderated by the bequest

motive, which effectively increases the investment horizon of the agent beyond his

own life expectancy.

Figure 6: Life-cycle profiles of wealth and its interest-rate sensitivity
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Note: This figure reports the evolution of market wealth and its sensitivity to interest rates over the
life-cycle in our benchmark calibration and in the SCF. In the data, wealth is computed per adult,
including deceased spouses, and scaled by the Social Security wage index. 95% confidence intervals
represent ± 1.96 standard errors, clustered by year.
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Figure 7: Interest-rate sensitivity at age 40–45
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Note: This figure reports the relationship between the interest-rate sensitivity of wealth and wealth
(left panel) and earnings (right panel). In the data, wealth and earnings are computed per adult and
scaled by the Social Security wage index. In the left panel, each bin represents a decile of earnings.
In the right panel, each bin represents 5% of observations, except for the four wealthiest bins which
represent 2.5% each. Simulated data report the average interest rate sensitivity per centile of wealth
and earnings respectively. 95% confidence intervals represent ± 1.96 standard errors, clustered by
year.

The left panel of Figure 7 reports the relationship between the interest-rate sen-

sitivity of wealth and income between age 40 and 45. In the model, high earners

invest more in the long-term asset because Social Security covers a smaller share

of their retirement consumption. As shown in Figure 1, in the data, the slope is

largely explained by the fact that high earners invest a larger share of their wealth in

stocks, largely through pension accounts. The purpose of those accounts is to com-

plement Social Security during retirement, which follows the logic of the model.

Note that the relationship seems slightly steeper in the data than in the model. The

model could generate a steeper relationship if we introduced a correlation between

earnings and life expectancy.

The right panel shows that the model also produces a positive relationship be-

tween the long-term asset share and wealth within an age group. This is partly

explained by the fact that wealthier households tend to be high earners and that hu-

30



man capital and Social Security represent smaller fractions of their total wealth, and

thus have weaker substitution effects. In the data, we observe a hump around the

third decile of the wealth distribution, which could also reflect the need for these

households to borrow to buy houses and vehicles.

It is notably difficult for life-cycle models to match the allocation of household

portfolios between stocks and short-term bonds. By contrast, our findings show

that a relatively simple model can match the key cross-sectional features of the

allocation of wealth between short- and long-term assets.

5.3 Wealth inequality trends

How much of the evolution of wealth inequality can our model and the historical

path of interest rates explain? To answer this question, we set up an overlapping

generations version of our life-cycle model. Specifically, we simulate the lives

of cohorts born between 1880 and 1986 and feed the model with the historical

time series of interest rates and interest-rate shocks. We provide more details on

the construction of this time series in Appendix A.3. We assume that, when a

household dies, its wealth is transferred to a household from a cohort that is thirty-

years younger. For simplicity, we assume this transfer of wealth to be unexpected.

Our focus is on understanding the effect of changing interest rates on trends

in wealth, but our model is not designed to match the level of wealth inequality.

First, the wealth concentration in the top 1% of the distribution comes primarily

from business income, which is omitted in our baseline model. Therefore, we focus

our attention on the empirical evolution of the top 10% share within the bottom

99%. Second, within the bottom 99%, wealth inequality is not just generated by

differences in earnings but also by heterogeneity in preferences and idiosyncratic

returns on wealth.
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For these reasons, we increase the σα from .472 to 1, such that the average

wealth share of the top 10% over our sample period matches the top 10% share

(within the bottom 99%) in the WID.

Figure 8 illustrates our results. In our historical simulation, the top 10% share

falls from 53.9% in 1956 to 50% in 1984, then rises back to 54.2% in 2019. Ac-

cording to the WID, the top 10% (within the bottom 99%)8 share fell from 58.6% to

49% in 1984, then rose back to 55% in 2019. Consequently, our model can explain

roughly half of the evolution in the top 10% share (within the bottom 99%) since

the 1960. The top 10%, inclusive of the top 1%, fell from 70.3% in 1962 to 62.1%

in 1985, then rose back to 70.7% in 2019.

Figure 8 also shows that, in the simulation, the top 10% share inclusive of Social

Security has not increased since the 1989, consistent with the empirical findings of

Catherine et al. (2020). From the point of view of workers, Social Security is a

leveraged position in the long-term asset. First, they are required to pay contribu-

tions, which is equivalent to a short position on a medium-term bond; in exchange,

they will receive pension benefits far into the future, equivalent to a long position

on a very long-term bond. The consequence of this leverage is that the net present

value of Social Security cash flows is highly sensitive to the yield curve.

8We approximate this measure as (Top 10% share - Top 1% share)/(100%- Top 1% share).
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Figure 8: Evolution of top 10% share
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6 Discussion

In this section, we discuss the quantitative implications of the model for the cross-

section. We first verify that the full model captures the same economic intuition

as does the linearized benchmark. The results reveal that mortality differences are

not of first-order importance to the cross-section, but Social Security is. We then

study the sensitivity of financial wealth, total wealth, and lifetime utility (welfare) to

interest rates. While there is a great deal of cross-sectional heterogeneity in the rate

sensitivity of financial wealth, there is little heterogeneity in that of total wealth or

lifetime utility. Redistribution of wealth from interest-rate shocks is inconsequential

for consumption and welfare.
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6.1 Mechanisms

The quantitative model validates our economic intuition and allows us to study

counterfactuals. Before discussing welfare implications, we analyze the importance

of two novel mechanisms in our model: income-based differences in mortality rates

and the presence of Social Security. Figure 9 plots quantities of interest with and

without these features.

Figure 9: Effect of Social Security and differences in life expectancy
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Note: This figure shows the effects of mortality differences and Social Security on life-cycle wealth
accumulation and the interest-rate sensitivity of wealth in the model. In the benchmark case, mortal-
ity probabilities are constant within an age cohort and there are no Social Security taxes or benefits.
Mortality differences are based on lifetime earnings (AIYE). Where relevant, wealth W and income
L are scaled by the Social Security wage index L1.
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Morality affects the optimal interest-rate sensitivity through two channels. First,

higher mortality rates reduce the value of human capital relative to financial wealth,

diminishing its substitution effect. Second, higher morality reduces rate exposure

because agents discount the future more. The distributional consequences of this

effect are revealed by the bottom two panels of Figure 9. The income-based adjust-

ment to mortality rates applies mostly to low-income households; the adjustment is

small for households with average and high income. As a result, the optimal rate

exposure falls noticeably for low earners but does not change much for other house-

holds. This means that the average life-cycle path of rate exposure, shown in the

top right panel of Figure 9, tends to be lower in levels than in the benchmark with-

out intracohort mortality differences. Perhaps surprisingly, the overall quantitative

effect of mortality differences on most of the cross-section is minimal.

The effect of Social Security is more substantial. The existence of Social Secu-

rity taxes and benefits leads to less accumulation of financial wealth over the life-

cycle, because taxes reduce disposable income and benefits crowd out the need to

save. Social Security also flattens the “hump” in rate exposure during working life

but has little effect in retirement, consistent with the economic intuition discussed

in Section 4. Finally, Social Security steepens the relation of rate sensitivity with

wealth and income. This, too, is exactly as predicted by the analysis in Section 4.

6.2 Exposure to interest-rate shocks

So far, we have focused on explaining the interest-rate sensitivity of households’

financial wealth. We now study the rate sensitivities of two measures that are more

relevant for welfare: wealth inclusive of Social Security and expected lifetime util-

ity. We find that there is less heterogeneity in these measures (especially expected

utility), suggesting that the recent rise in financial wealth inequality has not neces-
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sarily come with a rise in welfare inequality.

Recall that the rate sensitivity of financial wealth W is the elasticity

ε(W, rf ) = −∂ logW

∂rf
. (30)

We calculate the analogous elasticities for our other two measures. To calculate

wealth inclusive of Social Security, we capitalize the expected benefits and taxes

into a present value. To measure welfare, we calculate the sensitivity ε(U, rf ) of a

transformation of expected utility:

Uit = ((1− γ)Vit)
1/(1−γ), (31)

where Vit is the expected utility maximand (5). This transformation backs out a

total-wealth certainty equivalent — it is the value of total wealth implied by the

value function V taking a power form.9 Because V is a function of both wealth W

and rates rf , this elasticity can be decomposed as

ε(U, rf ) =
1

1− γ

(
−∂ log((1− γ)V )

∂rf︸ ︷︷ ︸
change in investment

opportunities

+
∂ log((1− γ)V )

∂W
ε(W, rf )︸ ︷︷ ︸

capital gains

)
. (32)

When rates decline, expected utility decreases because investment opportunities

are worse (the direct effect), but also increases because of capital gains in financial

wealth. If ε(U, rf ) is negative, as we find, then a decline in rates decreases welfare.

Figure 10 shows the average paths of these elasticities over the life-cycle. Adding

Social Security wealth does not change the average elasticity very much. This is

consistent with the fact that most of the hump-shaped pattern is driven by human

9The other, more mathematical reason for the transformation is that V is negative, so it does not
have a well-defined rate elasticity.
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capital and a diminishing investment horizon. The rate sensitivity of expected util-

ity, on the other hand, is virtually constant over the life-cycle. At all ages, house-

holds are negatively affected by lower rates as it reduces their lifetime consumption.

The magnitude of this effect is slowly declining over the life-cycle as the investment

horizon declines with age.

Figure 10: Interest sensitivities over the life-cycle
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Note: This figure reports the interest rate sensitivity of wealth, wealth inclusive of Social Security,
and expected utility over the life-cycle.

Figure 11 reports the distribution of these sensitivities within a middle-aged

cohort. First, note that when the net present value of Social Security cash flows

is taken into account, the wealth of the rich and of high earners is no longer more

sensitive to interest rates. This explains the findings of Catherine et al. (2020) that,

when Social Security is accounted for and discounted using the market yield curve,

wealth inequality has not increased since 1989. While including Social Security

wealth has a minimal effect on between-cohort differences (Figure 10), it has a

large effect within cohorts. This is for the reasons set forth in Section 4.
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Figure 11: Interest sensitivities at age 42
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Note: This figure reports the interest-rate sensitivity of wealth, excluding and including Social Se-
curity to an interest fall and the interest rate sensitivity of expected utility at age 42.

Within a cohort, expected utility is uniformly elastic to interest rates across the

earnings and wealth distributions. To a large extent, this result is built into our

model, as differences in portfolios mostly reflect substitution effects. Hence, in

the model, household differences in the long-term asset share offset variations in

the implicit weights of that asset in human capital and Social Security wealth, as

predicted by equation (25).

7 Conclusion

Prior work notes that differences in returns are a key determinant in the rise in

wealth inequality over the last forty years. Of particular importance to this expla-

nation is the greater holding of long-term, highly interest-rate-sensitive assets by

wealthy and high-income households, which saw greater capital gains due to the

large decline in interest rates seen over the same period. This paper shows that a

parsimonious life-cycle model with uninsurable income risk, a realistic Social Se-

curity system, and stochastic interest rates can generate the patterns of portfolio
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interest rate sensitivity observed in the cross section and makes concrete the rela-

tionship between the rise in wealth inequality and the decline in interest rates.

These results also pave the way for future research. The model above misses

along some key dimensions, namely underestimating the interest rate sensitivity

of the middle class, much of which is due to the long duration of home equity.

Alternative models may be able to capture this by focusing on the indivisibility of

housing or explicitly modeling the consumption of housing services, both of which

are beyond the scope of this paper. Moreover, future work may seek to embed the

trade-off households face between investing in long- and short-term assets and how

this interacts with the policy environment, to better understand monetary and fiscal

policies and their implications for inequality.
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INTERNET APPENDIX

A Data appendix

A.1 Survey of Consumer Finances

Data on household portfolios come from the Survey of Consumer finances. We construct networth

as.

networth d = cash dep+ equity+ fixed inc+ real estate

+ bus+ vehic− mortgage dbt− vehic dbt− other dbt,

where each of the constituent variables are defined as:

– cash dep: value of cash deposits defined as liquid accounts (liq) which are the sum of

all checking, savings, and money market accounts, call accounts at brokerages, and prepaid

cards, added to certificates of deposit (cds).

– equity: value of all financial assets invested in stock, which include directly held stock,

stock mutual funds, and the portion of any combination mutual funds, annuities, trusts,

IRA/Keogh accounts, and other retirement accounts invested in stock.

– fixed inc: value of all other remaining financial assets (fixed inc = fin− cash dep−

equity). The largest component of this asset category is bonds held outright, in mutual

funds, and in retirement accounts.

– real estate: value of the primary residence (houses) plus the value of other residential

real estate (oresre) and net equity in nonresidential real estate (nnresre).

– bus: reported market value of private business interest.

– vehic: prevailing retail value for all vehicles owned by household.
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– mortgage dbt: housing debt from mortgages, home equity loans, and home equity lines of

credit (mrthel) plus debt for other residential property (resdbt).

– vehic dbt: debt from vehicle loans (veh inst)

– other dbt: other debt, including other lines of credit plus credit card balance (ccbal) plus

installment loans less education loans and vehicle loans (other dbt = othloc+ ccbal+

install− edn inst− veh inst).

In addition to portfolio data, we also use data on household wage income (wageinc) which we

combine with data the number of people in the household and the Social Security wage index to

create a per capita wage measure which is comparable over time.

A.2 Duration component calculations

A.2.1 Duration of equity

The duration of equity is obtained using yearly estimates for the duration of the aggregate stock

market from Greenwald et al. (2021). We them apply a mean preserving adjustment to the aggregate

duration value by networth decile and age group using price-dividend ratios from asset holding data

in the SCF. The dividends used in the PD ratios are taxable “Ordinary Dividends” reported in IRS

form 1040 line 3b, which includes all dividend income from individually held stocks and mutual

funds and is given in the raw SCF as X5710. We call the assets corresponding to these dividends

tf equity, which we construct from the sum of SCF extract variables as

tf equity = stock+ stmutf+ comutf+ omutf+ gbmutf+ tfbmutf+ obmutf.

The major difference between the tequity variable and the tf equity variable is the inclusion of

bond mutual funds, in particular, government bond mutual funds (gbmutf), tax-free bond mutual

funds (tfbmutf), other bond mutual funds (obmutf), and a portion of combined mutual funds

(comutf).10 This is because, for the purpose of Form 1040, income from bond mutual funds are

taxed as dividends.

10The presence of bond mutual funds in the variables used to construct our adjustment could bias
our estimates if bond holdings make up a large portion of tf equity and differ systematically by
age group and decile. However, this is not the case in the data, as the stock portion accounts for the
vast majority of tf equity and remains stable across age groups and networth deciles.
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To understand how duration varies in the cross-section of equity holders, we split the respon-

dents into the age groups of 20-40, 40-60, and 60+ and compute networth deciles within each group.

We then sum the value of tf equity and dividends within each networth-age group and divide the

total asset value by the total dividend value to obtain each group’s price-dividend ratio. We then

create a mean-preserving adjustment multiplier by dividing these price-dividend ratios by the ag-

gregate price dividend ratio in the SCF. This implies that the Macaulay duration of equity for each

household is given by

dur(Equitydat) =
PD Ratioda
PD Ratio

× dur(Equityt) (A.1)

where d represents the within age group networth decile, a represents the age group, and t represents

the survey year.

Note that this adjustment is only applied to the portion of equity reported on Form 1040, namely,

directly held stocks (stock), stock mutual funds (stmutf), other mutual funds (omutf), and a

portion of combined mutual funds (comutf). To the other elements of equity whose income is

not reported on Form 1040, such as portions of retirement accounts allocated to stock, we apply the

duration of the aggregate stock market in that survey year.11

A.2.2 Duration of fixed income

Data on the Macaulay duration of government bonds, municipal bonds, corporate bonds, and mort-

gage backed securities come from Bloomberg where the series used are:

– U.S. gov/credit: LUGCTRUU

– U.S. Treasury: LUATTRUU

– Government-related: LD08TRUU

– U.S. aggregate: LBUSTRUU

– Municipal bond: LMBTTR

– Corporate: LUACTRUU

11This follows from a literature in behavioral economics that suggests people opt in the default
option for their defined contribution pension plans, usually the market portfolio (Madrian and Shea,
2001).

43



– U.S. MBS: LUMSTRUU

– Global aggregate: LEGATRUU

For holdings of U.S. government bonds (govtbnd + gbmutf + savbnd), we use the market-value

weighted average Macaulay duration of the U.S. gov/credit, U.S. Treasury, and government-related

bond categories. For holdings of tax-free and municipal bonds (notxbnd + tfbmutf), mortgage-

backed securities (mortbnd), corporate bonds (corpbnd), and foreign bonds (forbnd), we use

the Macaulay duration of municipal bonds, corporate bonds, U.S. MBS, and the global aggregate,

respectively. For all other fixed income assets, we assign a cash flow duration of 4.

A.2.3 Duration of real estate

The duration of real estate is obtained using the annual estimates of the duration of aggregate

real estate from Greenwald et al. (2021) Appendix E.2.4. These estimates are applied uniformly to

all individuals in the SCF by survey year.

A.2.4 Duration of private business wealth

The duration of private business wealth is computed for each household as the value of household

businesses, bus, divided by the annual cashflows cashflows from those equity holdings. However,

the annual cashflows cashflows from those equity holdings are not reported in the SCF, the major

issue being that that cashflows from private businesses partially contain implicit or explicit labor

income for the entrepreneur. As such, we must estimate or difference out this labor income, which

we do in four ways depending in the household’s role in the business and what is reported.

1. For households whose main respondent has an active management role in either of the house-

hold’s potential actively managed businesses, reports being self employed, and reports not

receiving a salary, we estimate their predicted wage.

– The predicted wage is estimated via ordinary least squares on all SCF respondents

j where the households wage income is the dependent variable, and the independent

variables are a third degree polynomial in age interacted with dummies for each Race×

Eduction × Gender group.

2. For households whose main respondent has an active management role in either of the house-

hold’s potential actively managed businesses and reports being self employed and receiving
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a salary or reports being employed by someone else, we subtract the maximum of their pre-

dicted wage and reported wage from busefarminc.

3. We repeat steps 1) and 2) for spouses who have an active management role in either of the

household’s potential actively managed businesses.

4. All other households with positive private business wealth who don’t meet the criteria for a

wage subtraction are given cashflows equal to busefarminc.

We then aggregate bus and the estimated annual cashflows and divided them to obtain our proxy for

duration.

Next, to allow our aggregate estimates of private business duration to vary over the wealth

distribution, we follow a similar procedure as we did with publicly traded equity. First, we split the

population into age groups of 20-40, 40-60, and 60+ and compute networth centiles within each age

group. We then sum the business wealth (bus) and total income from businesses (busefarminc)

within each centile-age group to obtain a price-total income ratio. Provided that cashflows from

equity are proportional to labor income, this provides a proxy for duration within each networth

centile-age group. These price-total income ratios are then divided by the aggregate price-total

income ratio ratio to obtain a mean preserving adjustment which is applied to the annual aggregate

private business duration estimates. This is given by

dur(Private businesscat) =
Price-total income ratioca
Price-total income ratio

× dur(Private businesst) (A.2)

A.2.5 Duration of vehicles

The vehic category in the SCF contains detailed information on up to 4 automobiles, up to 2 non-

automobile vehicles, and an aggregation of additional automobiles and non-automobile vehicles

owned by the household. For the primary automobiles of the house, we attribute an expected lifetime

of 8 years for 1989 and 12 years for 2019, linearly interpolating in intermediate years. We calculate

the time left on an automobile’s life as the model year plus the expected age minus the survey year.

We assume a fixed depreciation rate to 0 over the cars remaining years, and calculate the duration

using (1). We attribute a duration of one to vehicles whose age exceeds their expected lifetime.

For the aggregation of additional automobiles owned, we attribute a duration equal to the aver-

age of the duration of the first four automobiles owned by the household. For all non-automobile

vehicles owned by the household, we ascribe a duration of 6 years.
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A.2.6 Duration of debts

For the debt categories, mortgage dbt, vehic dbt, and other dbt, we break each up into their

component loans as described in the SCF extract and calculate the duration of each loan separately.

For each loan, we assume a fixed payment schedule, and thus its duration can be calculated using (1),

where N is the number of years remaining of the vehicles expected lifetime and ynt is the riskfree

spot rate at horizon n in year t.

Under our fixed payment assumption, the only metric we need for each loan is its time remain-

ing. Since different loan component variables contain different amounts of information in the raw

SCF, we calculate the time remaining differently depending on the available information for each

component loan group: primary component loans, aggregated additional loans, and lines of credit.

The primary component loans of each debt category contain information on loan origination, bal-

ance, payments, and interest rates. For these loans, we calculate the number of years remaining

on the loan payments using the reported origination year, length of loan at origination, and survey

year. For respondents with a positive loan balance who have missing responses for loan length or a

negative calculated time remaining, we impute time remaining with balance (B), initial amount (L),

interest rate (R), and year of origination (p) using the equation

T =
ln(Rp − B

L )− ln(1− B
L )

ln(R)
− p.

The aggregated additional loans group contains loan variables that capture an aggregation of loans

that the respondents hold in addition to the primary ones in each debt category. These loans include

data on only loan balance and payments (X). Using the average interest rates for primary loans in

the same debt category, we calculate time remaining as

T = −
ln(1− B(R−1)

X )

ln(R)
.

The third group of component loans is the lines of credit. The line of credit variables contain

information on loan balance, typical payments, and interest rates. With these data points, we calcu-

late time remaining according to the same formula used for the aggregated additional loans group.

Finally, there is an aggregated additional lines of credit variable, which we assign a duration equal

to the average of the duration of the other lines of credit.

We replace the duration of loans with a predicted time remaining under one year with a duration
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of one and give the median duration to respondents with a positive loan amount but insufficient

information to calculate time remaining on the loan.

A.3 Time series of riskfree rates

To obtain a time series of the short-term real interest rate, we use a methodology similar to that of

Beeler and Campbell (2012). Using the yield on the 10-year nominal Treasury bond y10 and annual

inflation rate π from Global Financial Data, we estimate the annual regression

y10,t − πt,t+1 = β0 + β1y10,t + β2πt−1,t + ϵt+1 (A.3)

on the post-war period. The fitted values are then taken as our estimate of the expected riskfree rate

10-years from time t, f̂10,t. From this, equation (4) yields the time-t riskfree rate:

rft = φ−10(f̂10,t − (1− φ10)r̄f ). (A.4)

Figure A.1: Time series of riskfree rates, Post-war sample
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Note: This figure presents the time series of short-term riskfree rates as estimated by Equation (A.3)
and transformed by Equation (A.4).
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As discussed above, we use this methodology for two main reasons. First, by using long-term rates

to back out short-term rates, we smooth much of the short-term variation in measured short-term real

rates that are potentially outside of our model. Second, this methodology allows us to extend our

real rate series further into the past, allowing for a longer simulation prior to our period of interest.

This procedure yields a time series of annual realizations of real rates {rft} and shocks {ϵrt} from

1789 to 2020. The post-war time series of these rates are shown in Figure A.1.

B Model appendix

B.1 Details on income tax rates

Section 3.5 discusses the taxes paid on labor income and Social Security benefits. In the model,

households face the following marginal tax rates:

Marginal Tax Rateit =



0.10 if L2,it < 0.18,

0.12 if 0.18 ≤ L2,it < 0.72,

0.22 if 0.72 ≤ L2,it < 1.54,

0.24 if 1.54 ≤ L2,it < 2.94,

0.32 if 2.94 ≤ L2,it < 3.73,

0.35 if 3.73 ≤ L2,it < 9.32,

0.37 if L2,it > 9.32.

(B.1)

The bendpoints in this formula are the limits of the 2020 tax brackets divided by the wage index.

B.2 Derivation of long-term bond returns

This section explains how the riskfree rate dynamics (4) and yields (??) imply the n-period bond

returns (8). First, note that (4) iterates backward to the expression

rf,t+j = (1− φj)r̄f + φjrft +

j∑
k=1

φj−kσrϵr,t+k, (B.2)
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a fact we will use below. Since it has no intermediate cash flows, the bond’s return from t to t+1 is

Rn,t+1 =
Pn−1,t+1

Pnt
, (B.3)

subject to the terminal condition P0t = 1. Notice that the return becomes riskless when n = 1,

so R1 = Rf . Substituting the riskfree rates (B.2) into the yield expression (??) and evaluating

expectations implies

ynt = r̄f +
1

n

1− φn

1− φ
(rft − r̄f ) +

1

n

n∑
j=1

µj .

Taking logs of (B.3) and substituting in this yield then implies the log return

rn,t+1 = nynt − (n− 1)yn−1,t+1

= r̄f +
1− φn

1− φ
(rft − r̄f )−

1− φn−1

1− φ
(rf,t+1 − r̄f ) + µn

= r̄f +
1− φn

1− φ
(rft − r̄f )−

φ− φn

1− φ
(rft − r̄f )−

1− φn−1

1− φ
σrϵr,t+1 + µn

= rft + µn − 1− φn−1

1− φ
σrϵr,t+1,

the stated expression (8).

B.3 Derivation of private-business valuation and duration

Let En represent the value of business income n periods into the future (the dividend strip with

maturity n). By analogy to the zero-coupon bonds, assume that the dividend yield on this strip

equals

y
(D)
nt = − 1

n
log

Ent
Dt

= ynt +
1

n

n∑
j=1

µ̃jD,

where we will set µ̃jD to get a constant risk premium. Note the boundary condition E0t = Dt (we

verify below that this holds in our solution). By definition, the return on this claim is

R
(D)
n,t+1 =

En−1,t+1

Ent
,
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so the log return

r
(D)
n,t+1 = ny

(D)
nt − (n− 1)y

(D)
n−1,t+1 + log

Dt+1

Dt

= rft + µn − σnϵr,t+1︸ ︷︷ ︸
rn,t+1−rft

+ µ̃nD + gD + σDϵD,t+1︸ ︷︷ ︸
r
(D)
n,t+1−rn,t+1

.

To target a maturity-invariant risk premium µE , including adjustments for Jensen’s inequality, we

need to set

µ̃nD = µD − gD − 1

2
σ2
D −

(
µn +

1

2
σ2
n

)
︸ ︷︷ ︸

=0

.

Combining these results, we have the strip value

Ent = E(n,Dt, rft) = PntDt exp

{
−n
(
µD − gD − 1

2
σ2
D

)}
.

Then the total value of private business equity is Et =
∑∞
n=1Ent.

The duration of this claim is simply

dur(Et) =

∞∑
n=1

n
Ent∑∞

n′=1En′t
=

∞∑
n=1

n
Pnt exp

{
−n
(
µD − gD − 1

2σ
2
D

)}∑∞
n′=1 Pn′t exp

{
−n′

(
µD − gD − 1

2σ
2
D

)} ,
a function of rft. To get a sense of this duration value, let rft equal r̄f and ignore the Jensen’s

inequality term, so that Pn ≈ exp{−nr̄f}. Then we have

Ent = Et exp

{
−n
(
r̄f + µD − gD − 1

2
σ2
D

)}
,

implying

Et = Dt

exp
{
−
(
r̄f + µD − gD − 1

2σ
2
D

)}
1− exp

{
−
(
r̄f + µD − gD − 1

2σ
2
D

)} .
It follows that the duration is approximately

dur(Et) =
1

1− exp
{
−
(
r̄f + µD − gD − 1

2σ
2
D

)} ≈ 1

r̄f + µD − gD − 1
2σ

2
D

.

The denominator is a risk-adjusted “r minus g” term.
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C Derivation of the linearized model

This section lays out the details of the linearization and analytical solutions presented in Section 4.

The approach follows that of Campbell and Viceira (2001), except that we add finite lives and,

ultimately, intertemporal income. To fully understand the economics, we first solve for policies in

the general case of recursive utility (i.e., disentangling risk aversion and the EIS), then reduce to the

time-additive case in the main text. For the remainder of this appendix section, we will suppress i

indices and state approximate (i.e., linearized) equalities as exact.

C.1 Linearized conditions

Suppose that there is no intertemporal income, so the budget constraint (6) simplifies to

Wt+1 = (Wt − Ct)RW,t+1.

The first-order condition for a recursive-utility agent takes the familiar form

1 = Et

[
βθt

(
Ct+1

Ct

)−θ/ψ

Rθ−1
W,t+1Rj,t+1

]
,

where βt = β(1 −mt) is mortality-adjusted patience, ψ is the EIS, θ = (1 − γ)/(1 − 1/ψ), and

Rj ∈ {Rf , Rn, RW }. The analytical solution follows from linearizing this budget constraint and

first-order condition.

Let lowercase letters denote logs and the ∆ operator denote first-differences. Scaling the budget

constraint by financial wealth Wt and log-linearizing implies

∆wt+1 = κw(mt) +

(
1− 1

ρc(mt)

)
(ct − wt) + rw,t+1,

where ρc(mt) = β(1−mt) and κw(mt) = log ρc(mt)+(1−ρc(mt)) log (1− ρc(mt))/ρc(mt).12

(Notice that, as mt → 1, ct → wt; agents who will die almost surely consume everything.) We can

12In infinite-horizon models like that of Campbell and Viceira (2001), one typically chooses ρc =
1− exp{E[ct−wt]}, which reduces to ρc = β for EIS of 1. Here, to capture the effect of aging, we
linearize instead around the unit-EIS solution, which is exact in our model.
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also get the linearized approximation to the log wealth return

rw,t+1 = rft + πt(rn,t+1 − rft) + πt(1− πt)vart(rn,t+1).

This expression is a discretization of the exact continuous-time law of motion. Finally, log-linearize

the Euler equation up to a second order:

0 = θ log βt+Et
[
− θ

ψ
∆ct+1 + (θ − 1)rw,t+1 + rj,t+1

]
+
1

2
vart

(
− θ

ψ
∆ct+1 + (θ − 1)rw,t+1 + rj,t+1

)
.

Substituting in rj = rn implies the risk premium on the long-term bond

Et[rn,t+1−rf,t+1]+
1

2
vart(rn,t+1) =

θ

ψ
covt(rn,t+1,∆ct+1)+(1−θ)covt(rn,t+1, rw,t+1). (C.1)

Using the decomposition

∆ct+1 = (ct+1 − wt+1)− (ct − wt) + ∆wt+1

and the expression for ∆wt+1 from the linearized budget constraint, we can rewrite

covt(rn,t+1,∆ct+1) = covt(rn,t+1, ct+1 − wt+1) + covt(rn,t+1, rw,t+1).

Combining this with the fact that

covt(rn,t+1, rw,t+1) = πtvart(rn,t+1)

and θ/ψ + 1− θ = γ implies the solution

πt =
1

γ

Et[rn,t+1 − rf,t+1] +
1
2vart(rn,t+1)

vart(rn,t+1)
−
(
1− 1

γ

)
(1− ψ)−1 covt(rn,t+1, ct+1 − wt+1)

vart(rn,t+1)
(C.2)

As explained in the main text, the first term is the myopic risk-return portfolio; the second is in-

tertemporal hedging of rate risk.

Another fact that will become useful is that the first-order condition for wealth returns (rj = rw)
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simplifies to

Et[∆ct+1] = ψ log βt + ψEt [rw,t+1] +
1

2

θ

ψ
vart (∆ct+1 − ψrw,t+1) .

Using the same decomposition of ∆c as above, the variance term can be rewritten

vart (∆ct+1 − ψrw,t+1) = vart (ct+1 − wt+1 + (1− ψ)rw,t+1)

= vart (ct+1 − wt+1) + (1− ψ)2π2
t vart (rn,t+1)

+ (1− ψ)πtcovt (rw,t+1, ct+1 − wt+1) .

We will use these expressions to solve for the equilibrium consumption-wealth ratio.

C.2 Optimal policies in the linearized model

We will now solve for the optimal consumption and portfolio choices using the conditions derived

above. Conjecture that the optimal consumption-wealth ratio takes the form

ct − wt = log(1− β(1−mt)) + (1− ψ)(ϱ0t + ϱrtrft),

for some functions ϱ0t = ϱ0({ms}s≥t) and ϱrt = ϱr({ms}s≥t) of the future mortality probabilities.

Increasing utility implies the boundary conditions limm→1(1−ψ)ϱ0(m) = 0 and limm→1 ϱr(m) =

0. This conjecture implies that

(1− ψ)−1covt(rn,t+1, ct+1 − wt+1) = ϱrtcovt(rn,t+1, rf,t+1)

= −ϱrtσnσr,

and therefore that, as claimed,

πt =
1

γ

µn + 1
2σ

2
n

σ2
n

+

(
1− 1

γ

)
ϱrt

σr
σn

= a0 + arϱrt.
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To solve for ϱ0 and ϱr, notice that this solution for π implies

Et[rw,t+1] = rft + πtµn + πt(1− πt)σ
2
n

= rft +
(
a0µn + (a0 − a20)σ

2
n

)
+
(
arµn + (ar − 2a0ar)σ

2
n

)
ϱrt − a2rσ

2
nϱ

2
rt

= rft + d0 + d1ϱrt − d2ϱ
2
rt.

It also implies

vart (ct+1 − wt+1) = (1− ψ)2ϱ2rtσ
2
r ,

(1− ψ)2π2
t vart (rn,t+1) = (1− ψ)2(a20 + 2a0arϱrt + a2rϱ

2
rt)σ

2
n,

(1− ψ)πtcovt (rn,t+1, ct+1 − wt+1) = (1− ψ)2(a0 + arϱrt)(−ϱrtσnσr).

Therefore, using the algebra from the previous section, we have

vart (∆ct+1 − ψrw,t+1) = (1− ψ)2(g0 + g1ϱrt + g2ϱ
2
rt)

for constants gj . Finally, we have

Et[∆ct+1] = Et[ct+1 − wt+1]− ρc(mt)
−1(ct − wt) + κw(mt) + Et[rw,t+1]

= (1− ψ)(ϱ0,t+1 + ϱr,t+1((1− φ)r̄f + φrft))

− ρc(mt)
−1(1− ψ)(ϱ0t + ϱrtrft) + κw(mt) + Et[rw,t+1].

Substituting all these facts into the Euler equation for wealth returns, then collecting coefficients on

rft, implies the difference equation

φϱr,t+1 = ρc(mt)
−1ϱrt − 1.
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Now iterate forward and use the boundary condition limt→∞ ϱrt = 0:

ϱrt = ρc(mt)(φϱr,t+1 + 1)

= ρc(mt) + φρc(mt)ρc(mt+1) + φ2ρc(mt)ρc(mt+1)ρc(mt+2) + . . .

= β(1−mt)

1 +

∞∑
j=1

φjβj
j∏

k=1

(1−mt+k)


The higher is the mortality probability, the less relevant are fluctuations in the interest rate to con-

sumption and portfolio choices. For reference, note that, for infinitely lived agents (mt = 0 for all

t), this converges to ϱr = ρc/(1− φρc), the result from Campbell and Viceira (2001).

Collecting the remaining constant terms implies a difference equation for ϱ0t, which we can

similarly iterate forward with terminal condition (1−ψ)ϱ0 → 0 to arrive at a solution. This verifies

the conjecture.

C.3 Adding labor income and Social Security

We now introduce a deterministic stream of labor income L and, in turn, Social Security taxes T

and benefits B. The present value of labor income (human capital) H and Social Security wealth S

are as stated in the main text.

As we did with the wealth return above, let us linearize the returns on human capital and So-

cial Security wealth using a continuous-time approximation. Let psurv(t, j) =
∏j
s=1(1 −mi,t+s)

denote the cumulative probability of surviving from t to t + j. For human capital, the log return is

approximately

rH,t+1 = rft + µHt +

tret−t∑
j=0

ωHjt

(
σj
σn

)
︸ ︷︷ ︸

πH
t

(rn,t+1 − rf,t+1)

where

ωHjt =
psurv(t, j)PjtLt+j∑tret−t

j′=0 psurv(t, j′)Pj′tLt+j′
=
psurv(t, j)PjtLt+j

Ht

is the value weight of the jth labor-payment, and therefore πH is a value-weighted rate-sensitivity

adjustment. More specifically, a share πH of the total value of human capital is an implicit holding
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of n-period bonds; this share is a value-weighted average of the cross-price elasticities

σj
σn

=
−∂ logPjt/∂rft
−∂ logPnt/∂rft

=
∂ logPjt
∂ logPnt

,

and hence constitutes an adjustment for the duration of the income stream relative to the traded

n-period bond. Identical logic leads us to conclude that the log return on Social Security is

rS,t+1 = rft + µSt +

 ∞∑
j=0

ωSjt

(
σj
σn

)
︸ ︷︷ ︸

πS
t

(rn,t+1 − rf,t+1),

where the value weights take the form

ωSjt = ωBjt − ωTjt =
psurv(t, j)Pjt(Bt+j − Tt+j)

St
,

the difference between the benefits claim and the tax liability.

Now, as in the main text, define total wealth as

W t =Wt + (Lt +Ht) + (Bt − Tt + St). (C.3)

(Recall that H and S do not include their contemporaneous “dividends,” so we must add them back

in this expression.) Grossing up at the rates of return on these assets implies

W t+1 = (Wt + Lt +Bt − Tt − Ct)RW,t+1 +HtRH,t+1 + StRS,t+1. (C.4)

Multiplying and dividing by W t − Ct, we have the dynamic budget constraint

W t+1 = (W t − Ct)RW,t+1.

where the return on total wealth

RW,t+1 =

(
Wt + Lt +Bt − Tt − Ct

W t − Ct

)
RW,t+1 +

(
Ht

W t − Ct

)
RH,t+1 +

(
St

W t − Ct

)
RS,t+1

= αWtRW,t+1 + αHtRH,t+1 + αStRS,t+1,
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and the return on financial wealth RW is as it was in the original problem.

Using the same linearization technique as before, the log total-wealth return can be approxi-

mated as

rw,t+1 = rft + µ̄t + π̄t(rn,t+1 − rft) +
1

2
π̄t(1− π̄t)σ

2
n,

where

µ̄t = αHtµHt + αStµSt

is a value-weighted drift term from the intertemporal endowments, and

π̄t = αWtπt + αHtπ
H
t + αStπ

S
t (C.5)

is the value-weighted average of positions in the long-term bond — that is, the percentage of total

wealth invested in the bond. Other than the presence of µ̄, this budget constraint is identical in form

to that from the problem with no labor income or Social Security. Following the same steps from

before, we conclude that

π̄t = π∗
t ,

where π∗
t is the optimal solution without intertemporal income. Substituting this into C.5 and rear-

ranging, we see that the optimal allocation to the asset from financial wealth is

πt = π∗
t +

(
Ht

Wt + Lt +Bt − Tt − Ct

)
(π∗
t − πHt ) +

(
St

Wt + Lt +Bt − Tt − Ct

)
(π∗
t − πSt ).

In the main text, we slightly simplify notation by redefining wealth to include the contemporaneous

income and consumption flows (thus far, we have assumed that it excludes these components). Doing

this gives us the final expression (25).

C.4 Optimal consumption plan in the limit

This section derives the the optimal consumption-investment strategy in the limit as risk aversion

approaches infinity and the EIS approaches zero. To do so, it is easiest to begin with the first-order

condition of a power-utility investor:

1 = Et

[
β(1−mt)

(
Ct+1

Ct

)−γ

Rj,t+1

]
. (C.6)
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Conjecture that the optimal consumption policy is some a deterministic constant Ct = C̄. Substi-

tuting this conjecture into the first-order condition implies the recursion

C̄t = (β(1−mt)Et[Rj,t+1])
−1/γ

C̄t+1. (C.7)

Now taking the limit as γ → ∞ implies that C̄t = C̄t+1 = C̄ — that is, consumption is indeed

deterministic and in fact time-invariant.

The present value of optimal consumption must equal total wealth, so we have

W t = C̄

tmax−t∑
j=0

Pjt, (C.8)

where tmax is the first year in which mt = 1.13 This expression pins down the value of C̄. Because

the optimal consumption plan is deterministic and constant, the agent finances it by purchasing C̄ of

each zero-coupon bond and consuming the coupons.

We wish to relate the optimal portfolio strategy financing this consumption plan to the optimal

policy π̄ derived above. First, using the same linearization technique as above, notice that the wealth

return under this consumption policy equals

rw,t+1 = rft +

tmax−t∑
j=0

Pjt∑tmax−t
j′=0 Pj′t

(
σj
σn

)
︸ ︷︷ ︸

π̃t

(rn,t+1 − rft) (C.9)

As with human capital and Social Security wealth, π̃ represents an implicit holding of n-period

bonds from the annuity financing consumption. Now let us compare this implicit holding π̃ to the

optimal holding π∗. In the limit, the general expression for optimal consumption (21) implies the

(negative) elasticity
∂ log(C̄/Wt)

∂rft
= ϱrt.

Calculating this same left-hand-side derivative from (C.8) and equating these, we have

ϱrt =

tmax−t∑
j=0

Pjt∑tmax−t
j′=0 Pj′t

(
σj
σr

)
.

13Note that this satisfies the terminal condition W tmax
= C̄, since P0 = 1.
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Substituting this into the expression for the optimal portfolio π̄ = π∗ in (22), then taking γ → ∞,

we have

π̄t = ϱrt
σr
σn

=

tmax−t∑
j=0

Pjt∑tmax−t
j′=0 Pj′t

(
σj
σn

)
.

This optimal policy is exactly identical to the expression π̃ from (C.9), as claimed.

D Numerical appendix

Table D.1: Calibration of labor income process

Parameter estimates for Section 3.3 come from Specifications (5) in Guvenen et al. (2022). Param-
eters can be found in Table IV of the published version and Table D.III of the Online Appendix. We
also combine the z and α processes, which results in the σz,0 parameter listed below. We do this to
avoid adding an additional state variable to the model, a decision that has little effect on the results
as the z process is extremely persistent. Finally, note the deterministic life-cycle component is given
by g(Age) = b0,g + b1,gAge + b2,gAge2/10 + b3,gAge3/100 where b0,g is specified to make mean
earnings equal to Social Security Wage Index.

Parameter Calibration
ρ 0.991
pz 17.6%
µη,1 -0.524
ση,1 0.113
ση,2 0.046
σz,0 0.652
λ 0.016
pε 4.4%
µε,1 0.134
σε,1 0.762
σε,2 0.055
aν · 1 -2.495
bν · t -1.037
cν · zt -5.051

dν · t · zt -1.087
b0,g -6.142
b1,g 0.3040
b2,g -0.051
b3,g 0.002586
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